Enhancing histological tissue and cell characterization with simultaneous gene expression and protein measurements

Cedric R. Uyttingco1, Jennifer Chew2, Rapolas Spalinskas3, Yifeng Yin1, Joe Shuga1, Benton Veire1, Naishitha Anaparthi1, Ryo Hatori1, Anna-Maria Katsori1, Layla Katiraei1, Alexander Hermes1, Jun Ding Chiang1, Patrick Roelli1, Stephen Williams1, William Nitsch1, Neil Weisenfeld1, Dan Walker3, Jason Koth1, Subham Basu1, Will Howat2, Karthik Ganapathy1, and Marlou Stoeckius1.

1. 10x Genomics, Pleasanton, CA, 2. Abcam, Cambridge, UK

1. Background

Cells establish their function, identity, and state through the careful orchestration of complex molecular mechanisms leading to gene expression. While gene expression can be measured by type and quantity of mRNA transcripts produced, the abundance and isoforms of expressed proteins cannot always be inferred directly from mRNA readout alone. Thus, to characterize cellular identity, condition, and function more accurately, it is important to evaluate gene expression at both transcript and protein levels. Here, we demonstrated a streamlined mulitomic tissue analysis by utilizing the highly multiplexed protein capability of 10x Genomics Visium Spatial Gene Expression Solution. The technique combines a human whole transcriptome probe-based panel with an oligo-tagged antibody oncology panel, developed with Abcam conjugated antibodies, to simultaneously assess the transcriptomic and proteomic profiles of sectioned FFPE tissues. This approach allows for the interrogation of the tissue biology in a way that cannot be captured by traditional image-based techniques or gene expression information alone.

2. Methods

Serial sections of FFPE human tonsils and breast cancer tissues were placed on Visium Gene Expression (GEX) slides. The Visium GEX slides incorporate ~5000 molecularly barcoded, spatially encoded capture spots on which tissue sections were placed, H&E stained, and imaged. Following incubation with the mRNA probes and a panel of oligo-conjugated antibodies, tissues were permeabilized and representative probes were captured. Libraries were generated and then sequenced on an Illumina NovaSeq at a depth of ~50,000 reads per spot. Using the Space Ranger analysis pipeline, the resulting whole transcriptome gene expression and proteomic profiles were mapped onto tissue images where the reads were aligned, clustering performed, and gene and protein expression analyzed. Additional analyses and data visualizations were performed on the Loupe Browser desktop software.

3. Spatial transcriptomic and proteomic characterization of human tonsils

4. Simultaneous transcriptomic and proteomic characterization of invasive ductal carcinoma breast cancer

5. Proteomic-directed gene expression profiling

6. Conclusion

The Visium Spatial Gene Expression Solution provides a platform that combines traditional histology with the throughput and depth of biological insight from next generation sequencing. Here, we demonstrate a novel mulitomic solution that offers the ability to combine both mRNA transcript and protein expression data with a histopathology image from the same sample. In addition to a simple workflow, this simultaneous high resolution transcriptomic and proteomic view of the tissue biology enables researchers to develop a greater understanding of clinical samples, and provide new insights into the heterogeneity of cellular states across multiple diseases. Together, this spatially resolved mulitomic information provides an unprecedented view into the tumor microenvironment, and a powerful new tool for the discovery of new biomarkers and to guide the search for effective therapies.

Please contact info@10xgenomics.com for inquiries or learn more at 10xgenomics.com

© 2021 10x Genomics, Inc. FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES.