Evaluation of 3 different scanners’ performance in creating images suitable for INIFY Prostate® to accurately predict suspicious cancer areas in prostate biopsies

Background
Prostate cancer is one of the most common cancer in men. Artificial intelligence algorithms can be used to facilitate its diagnosis and improve objectivity. These algorithms are dependent on high-quality Whole Slide Images (WSIs). This study evaluates prostate biopsy WSIs acquired on three different scanners by using an algorithm (INIFY Prostate®) outlining suspicious cancer areas.

Methods
- 15 independent slides from Tufts (5 benign - 10 cancer)
- 15 independent slides from Weaner (5 benign - 10 cancer)
- Slide scanning at Weaner, Aperio, Hamamatsu, Philips resulting in 90 WSIs
- INIFY predicts suspicious cancer areas and tumor volume (% area of biopsy involved)
- Evaluation of false negative & false positive algorithm annotations on all 90 WSIs in INIFY viewer by Tufts pathologist
- Data evaluation algorithm performance calculated as sensitivity and specificity

Figure 3: For all scanners (left Aperio, middle Hamamatsu, right Philips), the % suspicious cancer area predicted by the INIFY Prostate® algorithm was very similar and strongly correlated with the pathologists estimated cancer length.

Table 1: Meta-analysis of false negative algorithm annotations. No differences between scanners were identified (within one standard deviation).

Table 2: Meta-analysis of false positive algorithm annotations. No differences between scanners were identified (within one standard deviation).

Conclusions
INIFY Prostate® predictions on WSIs scanned on Aperio, Philips and Hamamatsu show excellent correlation in diagnostic accuracy and tumor volume estimation, with sensitivity of 100% for small focus cancer (<1mm), Specificity is high. No differences between scanners were identified. To our knowledge, this is the first quality assurance study comparing the performance of a prostate algorithm on images from three different scanners. Such studies will be important as pathologists move forward with implementing AI algorithms for routine sign-out workflows.

Figure 4: Evaluation metrics:
- Sensitivity = TP/(TP + FN) × 100%
- Specificity = TN/(TN + FP) × 100%

Figure 2: INIFY Prostate® viewer: graphical user interface where the pathologist can view, measure, outline, and zoom the digital images.

Figure 1: Study conduct.

Anil Parwani1, Dorota Johansson2, Kristian Eurén2, Lena Kajland Wilén2 and Ming Zhou3

1The Ohio State University Wexner Medical Center, 2ContextVision, 3Tufts Medical Center Boston